Muscle Contraction, but Not Insulin, Increases Microvascular Blood Volume in the Presence of Free Fatty Acid–Induced Insulin Resistance

نویسندگان

  • April C. Inyard
  • Daniel G. Chong
  • Alexander L. Klibanov
  • Eugene J. Barrett
چکیده

OBJECTIVE Insulin and contraction each increase muscle microvascular blood volume (MBV) and glucose uptake. Inhibiting nitric oxide synthase blocks insulin's but not contraction's effects. We examined whether contraction could augment the MBV increase seen with physiologic hyperinsulinemia and whether free fatty acid (FFA)-induced insulin resistance differentially affects contraction- versus insulin-mediated increases in MBV. RESEARCH DESIGN AND METHODS Rats were fasted overnight. Plasma FFAs were increased by intralipid/heparin infusion (3 h), insulin was increased with a euglycemic clamp (3 mU x min(-1) x kg(-1)), and hindlimb muscle contraction was electrically stimulated. Muscle MBV was measured using contrast-enhanced ultrasound. Insulin transport into muscle was measured using (125)I-insulin. BQ-123 (0.4 mg/h) was used to block the endothelin-1 (ET-1) receptor A. RESULTS Superimposing contraction on physiologic hyperinsulinemia increased MBV within 10 min by 37 and 67% for 0.1 or 1 Hz, respectively (P < 0.01). FFA elevation alone did not affect MBV, whereas 0.1 Hz stimulation doubled MBV (P < 0.05) and increased muscle insulin uptake (P < 0.05) despite high FFA. Physiologic hyperinsulinemia during FFA elevation paradoxically decreased MBV (P < 0.05). This MBV decrease was reversed by either 0.1 Hz contraction or ET-1 receptor A antagonism, and the combination raised MBV above basal. CONCLUSIONS Contraction recruits microvasculature beyond that seen with physiologic hyperinsulinemia by a distinct mechanism that is not blocked by FFA-induced vascular insulin resistance. The paradoxical MBV decline seen with insulin plus FFA may result from differential inhibition of insulin-stimulated nitric oxide-dependent vasodilation relative to ET-1 vasoconstriction. Our results implicate ET-1 as a potential mediator of FFA-induced vascular insulin resistance.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Regulation of Muscle Microcirculation in Health and Diabetes

Insulin increases microvascular perfusion and substrate exchange surface area in muscle, which is pivotal for hormone action and substrate exchange, by activating insulin signaling cascade in the endothelial cells to produce nitric oxide. This action of insulin is closely coupled with its metabolic action and type 2 diabetes is associated with both metabolic and microvascular insulin resistance...

متن کامل

Salsalate Attenuates Free Fatty Acid–Induced Microvascular and Metabolic Insulin Resistance in Humans

OBJECTIVE Insulin recruits muscle microvasculature, thereby increasing endothelial exchange surface area. Free fatty acids (FFAs) cause insulin resistance by activating inhibitor of κB kinase β. Elevating plasma FFAs impairs insulin's microvascular and metabolic actions in vivo. Whether salsalate, an anti-inflammatory agent, prevents FFA-induced microvascular and/or metabolic insulin resistance...

متن کامل

The Effects of Simvastatin on Free Fatty Acids Profile in Fructose-fed Insulin Resistant Rats

Backgrounds: Type 2 diabetes mellitus is the most common metabolic disease and free fatty acids, as signaling molecules, can play a crucial role in the development of it. Different free fatty acids, through various cell membrane receptors, induce different effects on metabolic pathways and thereby affect insulin sensitivity. Simvastatin is a cholesterol decreasing drug prescrib...

متن کامل

Increased muscle blood supply and transendothelial nutrient and insulin transport induced by food intake and exercise: effect of obesity and ageing.

This review concludes that a sedentary lifestyle, obesity and ageing impair the vasodilator response of the muscle microvasculature to insulin, exercise and VEGF-A and reduce microvascular density. Both impairments contribute to the development of insulin resistance, obesity and chronic age-related diseases. A physically active lifestyle keeps both the vasodilator response and microvascular den...

متن کامل

Association of adiponectin level with biochemical variables and insulin resistance in patients with non-alcoholic fatty liver disease in an Iranian population

Background: Non-alcoholic fatty liver disease is one of the most important chronic liver disorders worldwide. Adipokines are polypeptide hormones that participate in the pathogenesis of non-alcoholic fatty liver disease. Adiponectin is an adipokine that stimulates fatty acid oxidation in muscle and plays a role in the development of insulin sensitivity. This study aimed to investigate the assoc...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 58  شماره 

صفحات  -

تاریخ انتشار 2009